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In this Supporting Information, we provide further details on network modeling, network training
and additional examples showcasing the performances of different networks. This Supplementary
Information comprises the following Sections:
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Section I — Detailed information of the network architecture

Fig. S1 illustrates the network architecture of the proposed PNN and meta-filter design network,
with the data flow details included. As shown in Fig. Sla, the PNN consists of a bilinear tensor
layer, followed by four consecutive fully-connected layers. A ReLU activation function is applied
to the output tensor of each layer except for the last one. The real and imaginary parts of the
complex transmission coefficient are predicted using two independent networks, which share the
same network architecture.
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Figure S1. The network architectures of the PNN & meta-filter design network. a lllustration of the prediction
neural network. Details, including four fully-connected hidden layers and five weight arrays, are given in the figure.
b Detailed network structures for the training of the meta-filter design network. The designs are generated by the
meta-filter design network (circled in black dot line). The pre-trained PNN (circled in blue dot line) is cascaded to the
meta-filter design network to evaluate the optical performances of generated designs.



The complete network constructed for the training of the meta-filter design network is illustrated
in Fig. S1b. After the PNNs for the real & imaginary parts are constructed and well-trained, values
of the weight and bias arrays are fixed, saved, and then cascaded to the meta-filter design network
for meta-filters’ performance evaluation, as shown in the blue dot circle in Fig. S1b. After one
target spectra is fed into the meta-filter design network (outlined by a black dash-line contour),
corresponding design parameters are generated and then evaluated by the well-trained PNN, where
the designed spectra are finally obtained and compared with the target. Differences between them
are minimized through the training.

Section Il — Hyperparameters used in the DNN training process

Hyperparameters used in the training for both PNN and meta-filter networks are shown in Table
S1. The hardware consists of a quad-core CPU with 3.5 GHz clock speed, 64 Gigabytes of RAM
and two NVidia 1080Ti GPUs. As shown in the table, after 100,000 iterations, the average test set
error stabilized at 0.00035 and 0.00023 for the real and imaginary part prediction networks,
respectively. With the current hardware setup, the training takes 48 hours for both PNNs before
their error rates stabilize. The meta-filters design networks, on the other hand, take more training
time due to their more complicated network structures. Compared to the PNNs, they have 4 more
layers of hidden neurons included in their structure and are thus more time-consuming for each
iteration. All three meta-filter networks are well-trained after 50,000 iterations, each requiring 40
hours. This network is later fed with data from PNN dataset and trained, the small test error of 5.3%
also supports the conclusion that the training is completed and the relatively large errors with
previous Gaussian targets actually manifest the inherent difficulty of achieving increasingly
complex filter functions.

Table S1. Hyperparameters used in the training of PNN and meta-filter design network

PNN PNN . Mata-filter design network
Hperparameens | e gmegmey | GmEE Gouh, DN
Training set size 35000 35000 35000
Test set size 15000 15000 20000 20000 15000
Optimizer Adam Adam Adam
Learning rate 10° 10° 107
Dropout rate 0.3 0.3 /
Batch size 200 200 200
Batch Norm. No No Yes
Nonlinear ReLU ReLU Sigmoid
activations
Iterations 100000 100000 50000 50000 50000
Time taken 48h 48 h 40 h 40h 70 h
Error (train) 0.000048 0.000063

0, 0, 0,
Error (test) 0.00035 0.00023 10.24% 32.05% 5:3%
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Figure S2. Learning curves of the PNN & meta-filter design networks. Showing in the figures are the learning curves
of a real part PNN; b imaginary part PNN; c single-band Gaussian meta-filters design network and d dual-band

Gaussian meta-filter design network.

Learning curves recording the error history during the training of each network are shown in Fig.
S2. As shown in Figs. S2a and S2b, the differences between the training data error (in black) and
the test data error (in red) kept increasing during the training process, which is caused by
unavoidable overfitting. Overfitting occurs when a statistical model follows a particular set of data
too closely (in this case the training data), and may therefore fail to fit additional data (test data)
or predict future observations (data that are not included in the dataset) reliably. To minimize this
effect and ensure accuracy of the network for test dataset (which is benchmarked as the actual
accuracy), we applied a dropout rate of 0.3 to each layer in the PNN. The term "dropout" refers to
dropping out units in a neural network, with a dropout rate of 0.3, 30% of the hidden neurons in
each hidden layer are randomly eluded when the data is passed on from the previous layer to the
next. The ReL U function that was applied to each layer also helped to reduce the overfitting effect.
After applying these measures, the overfitting effect is minimized, along with the test data error.



Section III — Ablation analysis to verify the necessity of NTN layers and real & imaginary
component prediction approach

To address the importance of the NTN layers and the real & imaginary component prediction
approach, we performed an ablation analysis by constructing several additional differing neural
networks and trained them with the same dataset. For a fair comparison, two additional neural
networks were built: one replaced the NTN layer with an ordinary fully connected layer containing
1x50 neurons, the other one kept the same network architecture but used phase responses over the
30-60 THz frequency band as the training targets. These two networks, together with the network
proposed in the paper, are trained with the same dataset, including 35,000 training data samples
and 15,000 test data samples. After 200,000 iterations of training, learning curves of these three
networks are shown in Fig. S3.
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Figure S3. Ablation analysis on the effects of NTN layers and real & imaginary component predicting method. a
learning curves of the three different neural networks. b Numbers of iterations needed for each network to converge
to specified error levels. Both axes are set in log scale for a better view.

Firstly, by replacing the NTN layer with a conventional fully-connected layer, the converging
speed was significantly reduced. For the purpose of comparison, we marked the numbers of
iterations needed for each network to converge to error values of 10!, 102 and 107 (Fig. S3b). The
network with the NTN layer is able to converge more than 3 times faster than the conventional
fully-connected network. Secondly, it is extremely hard for the neural network using phase
responses as targets to converge. As shown in Fig. S3a, the prediction error of the neural network
using phase responses directly is still relatively high (>0.1) even after 100,000 iterations of training
(Fig. S3a). To further illustrate how these error values correspond to prediction results, we chose
some designs from the test dataset and evaluated their phase responses using the PNN and the
neural network using phase responses as targets, respectively. The results are shown in Fig. S4.
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Figure S4. Performance of the proposed PNN and the neural network using phase responses as targets to converge.
Red curves are the numerical simulation results from CST. Blue dots represent the phase responses predicted with
the PNN and blue curves are the corresponding interpolated spectral phase responses. The phase responses
generated by the neural network directly using phase responses are marked in green. All design parameters including
permittivity, gap (um), thickness (um) and radius (um) are given as insets.

As shown in Fig. S4, it is hard for the neural network directly using phase responses to predict
where the phase jumps would happen and the exact values of the phase jumps. As a result, it simply
averaged the phase responses of all 35,000 training data samples, which caused the “rounded”
phase responses (in green) around resonant frequencies as shown in Fig. S4. The proposed PNN
based on real and imaginary part predictions does not suffer from this issue. As shown in Fig. S4,
the prediction results from the PNN (in blue) are in good agreement with the numerical simulation
results (in red) across the whole frequency band.

The ablation analysis results have clearly shown that adopting the NTN layer and the real &
imaginary component training method accelerated the training process and increased the prediction
accuracy.



Section IV — Computation efficiency comparison

We performed several tests to compare the efficiencies of the “forward” PNN and “inverse” design
networks with those of traditional design methods. As shown in Table S2, we measured the time-
taken for all the designs mentioned in the paper. Since time taken with single PNN prediction or
numerical simulation varies from structure to structure, we took an average time based on over
100 results for each method. Depending on the skill and luck of the designer, the time-taken for
conventional methods can be very different. To be consistent, here we chose the brute-force
method, which is simply performing simulations on all parameter-combination-possible and then
picking the best design. More specifically, we counted the number of possibilities for each design
parameter based on the fabrication capability (in this case it is assumed to be 0.01 um), then
multiply the numbers together to derive the total number of simulations needed for brute force
scan. The total time is then estimated by multiplying this number with the average-time-taken for
a one-time numerical simulation.

From the results showing in Table S2, huge computation time savings are achieved by replacing
the conventional method with the DNN-based schemes. Interestingly, compared to the meta-atom
design networks whose model generators are built with evolutionary algorithms, the meta-filter
design network that used a DNN-based model generator is even more time-efficient, indicating the
superiority of pure DNN-based design networks.

Table S2. Time comparisons between DNN-based and brutal force methods

With DNN-based With numerical simulations Ratio
method (brute force scan)
Cylinder
One-time EM | motamtom 34.4 ms 19.4s 500
response
rediction H
p 35.4ms 22s 600
meta-atom
Design in 1.3 million simulations 5
Fic. 3 22s 3774 timati 10
Meta-atom ig. ays (estimation)
design Design in 253 5 130 million simulations 10
Fig. 4 77 years (estimation)
Meta-filter Designs in 1.3 million simulations 9
design Fig. 5 4.8 ms 277 days (estimation) 3¥10




Section V — Additional samples of the PNN
Design parameters ¢———————
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Figure S5. Additional prediction examples generated with the PNN. a Real part prediction examples. b Imaginary
part prediction examples. In each panel, the dots represent the PNN predicted values. The lines depict numerically
simulated values obtained with the commercial frequency domain solver (CST Microwave Studio). Randomly-
generated design parameters, including permittivity, gap (um), thickness (um) and radius (um) are shown at the top
of each panel.
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Figure S6. Additional amplitude and phase spectra examples generated from the PNN compared to simulation
results. The dots are E-field amplitude (blue) and phase (red) values calculated following the method in equation 1
of the main text, using real & imaginary part values generated from the PNN. Curves are simulation results from the
numerical simulation tool CST. Randomly-generated design parameters including permittivity, gap (um), thickness
(um) and radius (um) are shown at the top of each panel.
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Section VI — Additional samples of the PNN for H-shaped structures
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Figure S7. Additional amplitude and phase spectra examples generated from the PNN for H-shaped structures.
The dots are E-field amplitude (blue) and phase (red) values calculated following the method in equation 1, using
real & imaginary part values generated from the PNN. Curves are simulation results from CST. Randomly-generated
design parameters including permittivity, meta-atom thickness (um), Lx, Lx;, Ly and Ly; (um) are shown at the top
of each panel.



Section VII — Generalization to the modeling of more complicated meta-atoms

To further demonstrate the PNN’s potential in modeling more complicated meta-atoms, we
constructed a neural network dealing with nearly freeform all-dielectric meta-atoms. As shown in
Fig. S8, after adding 4 convolutional layers and training with over 30,000 meta-atom data points,
the network is able to converge well and generate accurate phase and amplitude predictions. Here
we randomly picked some sample meta-atoms from the test dataset and plotted their spectrum

response predicted by the PNN and CST, respectively.
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Figure S8. Generalization of the modeling approach to nearly free-form shaped meta-atoms. a Network
architecture. Four consecutive convolutional layers were added to the original network to process more complex



shape inputs (treated as 28x28 pixels pattern). The flattened output was further processed with 4 layers of fully-
connected layers before the real and imaginary components of the input structure were generated. b Examples
demonstrating the PNN performance. Small subplots shown on the left are the real and imaginary parts of each
meta-atom’s transmission coefficient. The red curves shown in the large subplots represent the phase profiles, while
the blue curves refer to the amplitude responses. Dots represent data generated by the PNN, while solid curves are
data obtained from numerical simulations. Shapes of each meta-atom are given in the insets, while their heights,
periodicity and refractive index are fixed at 1 um, 2.8 um and 5, respectively, to simplify the problem. All meta-atoms
presented were randomly selected from the test data.

Section VIII — Additional samples of the meta-filter design network
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Figure S9. Additional design examples employing the meta-filter design network. a Samples from the single-band
target dataset. b Samples from the dual-band target dataset. Red curves are target filter spectral responses, and the



blue curves are the PNN-predicted filter spectral responses based on the designs given by the design network, the
green curves are the CST-simulated amplitude responses. All design parameters including dielectric constant, gap
(um), radius (um) and thickness (um) are shown at the top of each subplot.

Section IX — PNN vs. interpolation

The PNN is a far more sophisticated, precise, and powerful tool compared to interpolation
algorithms for two reasons. First, a well-trained PNN offers superior performance in making
predictions based on the same prior information. To demonstrate this, we find a unique method to
compare the PNN’s performance with a built-in interpolation function from the numerical
computing tool MATLAB. As shown in Fig. S10a, we first find the 27 groups of data (in blue
circles) that are evenly distributed in the parameter range: gap € [1.2,1.4],thickness €
[1,1.2] and radius € [0.6, 0.8] (all in um), with a spacing of 0.1 um for each parameter. Then we
randomly chose two test parameter combinations within this parameter space (indicated by the
green and red triangles) and predict their transmission coefficients with the PNN and the
interpolation tool, respectively. Since these 27 groups are the only training datasets existing in this
specific parameter space, the PNN and the interpolation tool have “equal knowledge” about data
within this range. Using a spacing of 0.01 um for each parameter, we created 21 x 21 x 21 (a total
0f 9,261) query points (blue dots in Fig. S10b) and performed two types of interpolations (linear
and cubic) for each query point (including the two test samples). According to the results shown
in Figs. S10c and S10d, spectra obtained by the interpolation tools (blue squares and green
triangles) are much less accurate compared to the PNN predictions, in particularly at the short
wavelength (high frequency) end of the spectrum. In contrast, the PNN-generated spectrum (red
circles) maintains high accuracy across the entire 30-60 THz band.
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Figure S10. Comparison between PNN and data interpolation. a The parameter scope chosen to perform the
comparison. Blue circles indicate the 3 by 3 by 3 data points for interpolation. Green and Red triangles indicate the
locations of the two test samples in this parameter scope. All data samples have the same dielectric constant of 24.
b The meshed parameter scope with 21 by 21 by 21 query points. Both test parameter combinations are covered in
these query points. ¢ Prediction results with the PNN (red circles), linear interpolation (blue dots), cubic interpolation



(green stars) and numerical simulation results (black lines) for the first test data point (green triangle in a and b) d
PNN, interpolation and simulation results for the second (red triangle in a and b) test data point. Dimensions of these
two test samples are given as insets.

The second reason is that the proposed PNN can also be used for extrapolation to make predictions
outside the parameter space of the training data set. Ordinary extrapolation requires assumptions
by a designer about the physical behavior outside of the data set (linear, polynomial, etc.), which
are unlikely to hold over a significant data range. Moreover, the best choice of model may not be
intuitively clear, particularly for multivariable problems. The PNN is better informed than a
traditional designer when it comes to making accurate extrapolation predictions, because it can
draw much more information from the training data to unravel intrinsic physical behavior of the
system. We explored the PNN’s “out-of-range” prediction capacity by feeding it with meta-atom
structures with one or more parameters residing outside of the preset training data range. As shown
in Fig. S11, the PNN retains excellent prediction accuracy when the inputs are not too far beyond
the training data set boundaries. This interesting discovery indicates the DNN-based method’s
potential for uncovering the hidden physical mechanisms behind the large amount of input data.
Nonetheless, since the PNN’s performance deteriorates as the inputs move far away from the preset
data range, it is important that certain boundaries of the collected data, such as fabrication limits,
system requirements and design interests should be carefully determined before the network is
constructed.
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Figure S11. Examples of the proposed PNN with test data outside of the learning range. Smaller subplots shown
on the left are the real and imaginary parts of each meta-atom’s transmission coefficient. The red curves shown in
the larger subplots represent the phase profiles, while the blue curves refer to the amplitude responses. All dots
represent data generated by the PNN, while solid curves are data obtained from the numerical simulation tool.
Design parameters including the dielectric constant, gap (um), thickness (um) and radius (um) of each meta-atom
are given in the insets. All four meta-atoms presented have one or more parameters residing outside of the preset
training data range. Values in the parentheses represent the distance from the preset data boundary.



